MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3.

نویسندگان

  • Cheng Hao
  • Shuhua Yang
  • Weihua Xu
  • Jacson K Shen
  • Shunan Ye
  • Xianzhe Liu
  • Zhe Dong
  • Baojun Xiao
  • Yong Feng
چکیده

Steroid-induced osteonecrosis of femoral head (ONFH) is a serious complication of glucocorticoid (GC) use. We investigated the differential expression of miRs in the mesenchymal stem cells (MSCs) of patients with ONFH, and aimed to explain the relationship between GC use and the development of MSC dysfunction in ONFH. Cells were collected from bone marrow of patients with ONFH. Samples were assigned to either GCs Group or Control Group at 1:1 matched with control. We then used miRNA microarray analysis and real-time PCR to identify the differentially expressed miRs. We also induced normal MSCs with GCs to verify the differential expression above. Subsequently, we selected some of the miRs for further studies, including miRNA target and pathway prediction, and functional analysis. We discovered that miR-708 was upregulated in ONFH patients and GC-treated MSCs. SMAD3 was identified as a direct target gene of miR-708, and functional analysis demonstrated that miR-708 could markedly suppress osteogenic differentiation and adipogenesis differentiation of MSCs. Inhibition of miR-708 rescued the suppressive effect of GC on osteonecrosis. Therefore, we determined that GC use resulted in overexpression of miR-708 in MSCs, and thus, targeting miR-708 may serve as a novel therapeutic biomarker for the prevention and treatment of ONFH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1

The imbalance between adipogenic and osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) plays a significant role in the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH). Several microRNAs (miRNAs) are involved in regulating adipogenesis and osteogenesis. In this study, we established a steroid-induced ONFH rat model to identify the potential relevan...

متن کامل

Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2

BACKGROUND AND PURPOSE Trauma-induced osteonecrosis of the femoral head (TIONFH) is a major complication of femoral neck fractures. Degeneration and necrosis of subchondral bone can cause collapse, which results in hip joint dysfunction in patients. The destruction of bone metabolism homeostasis is an important factor for osteonecrosis. MicroRNAs (miRNAs) have an important role in regulating os...

متن کامل

Alterations in the differentiation ability of mesenchymal stem cells in patients with nontraumatic osteonecrosis of the femoral head: comparative analysis according to the risk factor.

It has been suggested that decreased replication capacity of mesenchymal stem cells (MSCs) or decreased MSCs activity in the bone marrow is related to nontraumatic osteonecrosis (ON). However, little is known about differentiation ability of MSCs according to the risk factor of nontraumatic ON. We hypothesize that differentiation abnormalities in MSCs of the bone marrow of the proximal femurs m...

متن کامل

Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head

BACKGROUND AND AIM The biological functions of non-coding RNAs (ncRNAs) have been widely identified in many human diseases. In the present study, the relationship between long non-coding RNA HOTAIR and microRNA-17-5p (miR-17-5p) and their roles in osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head (ONFH) were investigated. METHODS The expression levels...

متن کامل

(miRNAs) from bone marrow mesenchymal stem cells (BMSCs) in a rat model of steroid-induced osteonecrosis of the femoral head (ONFH) using Affymetrix GeneChip®. Following identification of miRNAs, the present study aimed to elucidate the molecular mechanisms underlying steroid-induced ONFH

The present study aimed to identify microRNAs (miRNAs) from bone marrow mesenchymal stem cells (BMSCs) in a rat model of steroid-induced osteonecrosis of the femoral head (ONFH) using Affymetrix GeneChip®. Following identification of miRNAs, the present study aimed to elucidate the molecular mechanisms underlying steroid-induced ONFH. A total of six C57BL/6J mice were randomly divided into two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016